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Analogy between fluid friction and heat transfer
in annulif
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Department of Chemical Engineering, Kyoto University, Kyoto, Japan

Abstract—A semi-theoretical equation for the heat transfer coefficient on the inner wall in turbulent

annular flow is obtained from the analogy between fluid friction and heat transfer. Comparison of the

equation with experimental data of air flow obtained by the author shows good agreement. It is also in
close agreement with the equation proposed by Monrad and Pelton at a higher Prandt] number.

INTRODUCTION

THERE are many experimental or recommended equa-
tions for heat transfer to annuli. But the values of heat
transfer coefficients given by these equations differ
considerably, and all of them are higher than the
author’s experimental values for air.

The author extended the concept of the analogy
between heat transfer and fluid friction fo apply it to
this case and obtained a semi-theoretical equation,
which could correlate the data for air, and was also
in close agreement with Monrad and Pelton’s equa-
tion [1] if applied for liquid.

VELOCITY DISTRIBUTION AND FLUID
FRICTION

The velocity distribution and fluid friction in annuli
were well discussed by Rothfus ef al. [2]. They con-
cluded that the radius of maximum velocity in fully
developed turbulent flow was the same as predicted
by Lamb’s equation [3] for entirely viscous flow

rm = {(rf«rg)/Zln(r,/ro)}”z. m
Furthermore, according to them
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V. seems to be more reasonable than V.
Between the skin frictions on outer and inner tube
walls there exists the following relation:
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When f, is defined as based on the overall average
velocity ¥, and Re as d.,Vp/u

T This paper was presented at the 1st International Heat
Transfer Conference held in London, 1951, and published in
the Proceedings of the General Discussion on Heat Transfer.
It is here reproduced by permission of the Council of the
Institution of Mechanical Engincers.
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Furthermore, Rothfus er al. discussed the velocity
distribution in the annuli in detail. The author,
however, assumes Karman-Prandtl’s seventh root
law for brevity, and the ratios of ¥,,, ¥, and Vo to ¥
can then be calculated as follows:
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HEAT TRANSFER COEFFICIENTS TO ANNULI

Firstly, the following case is considered when the
radii of maximum temperature and maximum velocity
are equal. The heat is transferred from the region
inside r,, to the inner tube wall, and from outside r,,
to the outer tube, the transfers being independent of
each other. Then, the relation between skin friction
on the inner tube wall and heat transferred to the
inner tube wall is

(o —1t0)/q0 = (W/K) (Vs [70). ®

In the turbulent core, the Reynolds analogy is applied
and the following relation is obtained :

(Fo—15)190 = (Vo — V) /{(c70)- 9

Secondly, the following case is to be considered.
The outer tube wall is insulated, and the heat is trans-
ferred to the inner tube wall from all parts of the
annulus. The resistance of the laminar layer to heat
transfer is exactly the same as in the former case,
therefore a similar equation to equation (8) is ob-
tained
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¢, specific heat of fluid at constant pressure
d., equivalent diameter, 2(r,—r,)

f  Fanning-type friction factor

h  heat transfer coefficient

k  thermal conductivity of fluid

K., K, K; constant depending on ry/r, only

Nu  Nusselt number, hd,,/k

Pr Prandtl number

g  heat transferred to wall

Re Reynolds number, 4,,Vp/u

r radial distance from the center to a point
in the fluid stream

local fluid temperature

average fluid temperature

local fluid velocity

average fluid velocity.

<< -

NOMENCLATURE

Greek symbols
a  eddy diffusivity of heat
At temperature change along the axial
direction i
& absolute fluid viscosity ;
p  fluid density
T skin friction.

Subscripts

0  inner tube wall or region inside radius of
maximum velocity

1 outer tube wall or region outside radius of
maximum velocity

b boundary between laminar layer and
turbulent core

m  maximum velocity.

(t~10)/q = Wk)(Vu/70).

The resistance in the turbulent core, however, is not
the same. On the following assumptions the ratio of
the resistances of the two cases can be calculated : that
the velocity in the turbulent core has the uniform
value V; that the temperature change along the axial
direction, A,¢, is equal over the entire annulus; and
that in the turbulent core, the eddy diffusivity of heat
o is constant across the annulus. In the first case, heat
passing through the section r is expressed as

(10)

a(dt/dr)2nr = n(ra—r’)Vpc,A,L. (1D

When this is solved the average temperature difference
can be calculated. On the other hand, ¢, is expressed
as n(r2 —r2)Vpc,A,t and hence, the thermal resistance
in the turbulent core is

To—t, 1
g0 mlra—ri)’a

o O N M
mh w2 ) (12
B S O

In the second case, a similar result is obtained and
therefore the ratio of the resistances of the two cases
is

N = {(F—t)/q}/{(Fo—1,)/q0}
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Consequently, the thermal resistance of the turbulent
core in the second case becomes

(I—=t,)/q = N(Vy = V) (c,70)- (14)
Combining equations (10) and (14)
(fo/2)c,pV (15)

T N [T= Vo [V)+ Pr(V, V)
According to Prandtl [4], and by application of the
same correction as introduced by the author [5] into

Prandtl’s equation of the analogy, the following
relations are obtained :

VoV = Ko/ fol Pr"?

Vil 4r—ry Vo \"¢
K, = < il «r»°~:) .

T \K T 7 (19

Furthermore, r,/r, can be calculated from the fol-
lowing equation:

(ry—ro)/(ri—rg) = Kﬁfowz/P"o‘2

K, =4K,/K} {7
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F1G. 1. Comparison of several equations for heat transfer to

annuli, Pr = 0.74, ro/r, = 0.457: A, Foust and Christian ;

B, Davis; C, Wiegand; D, Monrad and Pelton; E, equa-
tion (15).
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Fi1G. 2. Comparison of several equations for heat transfer to

annuli, Re = 10000, ry/r, = 0.457: A, Foust and Christian ;

B, Davis; C, Wiegand; D, Monrad and Pelton; E, equa-
tion (15).

and consequently, the heat transfer coefficient 4 can
be calculated from equation (15).

In Fig. 1, the plots are the author’s data for air flow
(Pr =0.74) in an annulus (ry/r, = 0.457) for various
Reynolds numbers. Equation (15) correlates the data
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FiG. 3. Comparison of equations, Re = 10000, Pr=7:
A, Monrad and Pelton ; B, equation (15).
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fairly well and for comparison, several equations
(Monrad and Pelton [1], Foust and Christian [6],
Davis [7], and Wiegand [8]) are shown, all of which
give too high values.

In Fig. 2, equation (15) and Monrad and Pelton’s
equation

Nu = 0.020(r, /ry)*3? Re®8 Pri/3 (18)

are compared at the same radius ratio r,/r, = 0.457,
and Reynolds number Re = 10000, only the Prandtl
number being a variable ; they are in close agreement
for Pr> 5. It should be noted that the effect of N
becomes smaller with an increase of Pr. The sat-
isfactory agreement of the two equations can be seen
by comparing them when Pr =7 and Re = 10000,
and ry/r, is a variable as in Fig. 3.
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ANALOGIE ENTRE FROTTEMENT DU FLUIDE ET TRANSFERT DE CHALEUR
DANS LES ESPACES ANNULAIRES

Résumé—Une équation semi-théorique pour le coefficient de transfert thermique 4 la paroi interne est

obtenue pour un écoulement turbulent, a partir de I’analogie entre frottement et transfert de chaleur. La

comparaison entre le calcul et les données expérimentales pour un écoulement d’air, obtenues par I'auteur,

montre un bon accord. Il y a aussi une concordance avec I’équation proposée par Monrad et Pelton pour
les nombres de Prandtl élevés.

ANALOGIE ZWISCHEN REIBUNG UND WARMEUBERGANG BEI DER STROMUNG
EINES FLUIDES IN EINEM RINGSPALT

Zusammenfassung—Aus der Analogie zwischen Reibung und Wirmeiibergang 148t sich eine halb-theo-

retische Gleichung ableiten, mit der der Wirmeiibergangskoeffizient an der inneren Wand eines turbulent

durchstrémten Ringspalts berechnet werden kann. Ein Vergleich der berechneten mit eigenen gemessenen

Werten fiir Luft zeigt eine gute Ubereinstimmung. Die ermittelte Gleichung zeigt ebenfalls gute Uber-

einstimmung mit den Werten, die nach der Gleichung von Monrad und Pelton bei héheren Prandtl-Zahlen
ermittelt wurden.

AHAJIOTUA MEXAY THAPOAUHAMHWYECKHUM TPEHHUEM U TEIIJIONTEPEHOCOM B
KOJIBLIEBBIX KAHAJIAX

Amorams—H3 asanorny Mexay rufipoIHHAMHYECKUM TPEHHEM H TEILTONEPEHOCOM MONYHEHO ypaBHe-
Hue WA Ko3(pdHUMEHTa TEILIONEPEHOCa Ha BHYTPEHReH CTeHKe TypGYJNEHTHOTO KOJBLEBOTO KaHANA.
CpabHeHHe JaHHBIX, HalICHHBIX [0 YPABHEHHIO, C NOMYYEHHEIMA 38BTOPOM 3KCIICPHMEHTAILHEMHE Pe3y-
AHTATAMH JUIS BO3AYIIHOFO NOTOKA MOKAa3aJlo XOpolllee COBNaJeHHE. Y PABHEHHE XOPOLIO COTIacyeTCs
Taxxke C ypaBHEHHEM, NpeJIokeHHHM Monpanom u ITenTonom ans Gonee suicokoro yucna Mpauatis.



